Relative Potencies of Antagonists of the Luteinizing Hormone Releasing Hormone with Lys⁸ and Arg⁸ and Substitutions in Positions 3, 5, 6, 7 and 8

Karl Folkers*, Cyril Bowers**, Pui-Fun L. Tang*, Minoru Kobota*, Xiao Shao-bo*, Wolfgang Bender*, and Liu Yin-Zeng*

- * The Institute for Biomedical Research, The University of Texas at Austin, Austin, Texas 78712
- ** Director of Endocrine Unit, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112
- Z. Naturforsch. 41c, 1087-1091 (1986); received June 10, 1986

Luteinizing Hormone Releasing Hormone, Ovulation, Peptide, Antagonist, Histamine Release

Antagonists of the luteinizing hormone releasing hormone (LHRH) of increased potency is a goal for control of ovulation. In the design and synthesis of 26 decapeptides, emphasis was given to analogs with Lys 8 and Arg 8 and with various substitutions in positions 3, 5, 6, 7 and 8. Two antagonists, [N-Ac-d-2-Nal¹,d-pClPhe²,d-3-Pal³,Ser⁴,Tyr⁵,d-Arg⁶,Leu²,Lys 8 ,Pro 9 ,d-Ala¹ 0]—NH $_2$ and [N-Ac-d-2-Nal¹,d-pClPhe²,d-3-Pal³,Ser⁴,Arg⁵,d-3-Pal⁶,Leu²,Arg 8 ,Pro 9 ,d-Ala¹ 0]—NH $_2$ showed 80–85% antiovulatory activity (AOA) at 0.25 μg in the rat. The latter antagonist showed 60% AOA at 0.125 μg . Of four pairs of analogs with Arg 8 and Lys 8 , respectively, two pairs favored Lys 8 over Arg 8 for potency. One pair showed negligible difference and another pair favored Arg 8 over Lys 8 . There is specificity of substitution for potency. In other antagonists, d-3-Pal³, Tyr⁵ or Phe⁵, d-Arg 6 and Leu 7 or Nle 7 or Val 7 and Arg 8 were variously effective substitutions for increase of potency and reduction of histamine release.

Introduction

Karten and Rivier [1] published in 1986 a comprehensive report of GnRH analog design and summarized structure function studies toward the development of agonists and antagonists by many investigators. They emphasized rationale and perspective, and included a section on peptide-induced histamine release of timely importance.

Schmidt *et al.* [2] reported the pivotal observation that an antagonist, [Ac-D-2-Nal¹,4FD-Phe²,D-Trp³,D-Arg⁶]GnRH, caused in rats a transient edema of the face and extremities when the peptide was subcutaneously administered. On the basis of this and subsequent observations, it was concluded [1] that those antagonists of LHRH which were the most potent in causing histamine release had a structural combination of a basic D-amino acid in position 6 and Arg⁸ and a grouping of hydrophobic aromatic amino acids in the three positions of the N-terminus.

Abbreviations: D-3-Pal, D-3-pyridylalanine; D-pClPhe, D-p-chlorophenylalanine; D-2-Nal, D-2-naphthylalanine; Cit, Citrulline; 6-Qal, 6-quinolylalanine; NicLys, Nε-nicotinoyllysine; α-MeArg, α-methylarginine; AOA, antiovuktory activity; LHRH, luteinizing hormone releasing hormone; GnRH, gonadotropin releasing hormone; Boc, N-test-butoxycarbonyl.

Reprint requests to Dr. Karl Folkers.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0341-0382/86/1100-1087 \$ 01.30/0

At this stage of the multidisciplinary and multiple group search for safe and effective antagonists of LHRH to control ovulation, it became compelling to design antagonists which not only would be adequately potent but cause negligible release of histamine which perhaps could be no greater than that of the clinically important superagonists of LHRH.

The release of histamine is not restricted to these antagonists of LHRH since somatostatin analogs caused histamine secretion [3], and neuropeptides caused histamine release and vascular changes [4], and compound 48/80 and substance P induced release of histamine and serotonin [5], and gastrin induced histamine release from human cutaneous mast cells [6].

Subsequent to the realization that designs of antagonists of LHRH must maintain potency of AOA and minimize histamine release, progress has been reported. Prominent in design change has been deletion of D-Arg in position 6 and transfer of Arg in the L-form to position 5. Roeske *et al.* [7] synthesized [Ac-D-2-Nal¹,4ClD-Phe²,D-Trp³,Arg⁵,D-Trp⁶,D-Ala¹⁰]GnRH and found that it was about one-tenth as potent as the D-Arg⁶ antagonist in causing histamine release.

Folkers *et al.* [8] synthesized the Arg⁵,D-3-Pal⁶ antagonist, [N-Ac-D-2-Nal¹,D-pClPhe²,D-3-Pal³,Ser⁴, Arg⁵,D-3-Pal⁶,Leu⁷,Arg⁸,Pro⁹,D-Ala¹⁰]-NH₂, which caused 60% inhibition of ovulation in the rat at

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

125 ng and appeared to be the most potent antagonist yet described. The strategy of the design was replacement of D-Arg⁶ with D-3-Pal⁶ and of Tyr⁵ with Arg⁵. They also observed that histamine release was less for the D-3-Pal⁶ peptides of three pairs of analogs.

Millar [9] observed the stimulation of gonadotropin release by a non-GnRH peptide sequence of the GnRH precursor. Sundaram *et al.* [10] recorded species differences in the sensitivity to the antitesticular effects of [Ac-D-2-Nal¹,4FD-Phe²,D-Trp³,D-Arg⁶]LHRH. Folkers *et al.* [8] cited six relevant accounts of other investigators who had given primary emphasis to potency of AOA rather than to potency and histamine release.

Herein, we describe the design, synthesis and bioassay for potency of AOA and histamine release in rats of 26 peptides with particular emphasis of substitutions in positions 6 and 8 to replace D-Arg⁶ with D-His⁶, D-3-Pal⁶, D-2-Nal⁶ and Arg⁸ with Lys⁸, Leu⁸, Cit⁸ and other substitutions.

Experimental

Materials

The purchase of the amino acid intermediates, the protective groups of the alpha-amino functions, the source and nature of the resin, solvents, and other chemicals were described [8], but with modifications as follows.

Boc ϵ -Nicotinoyl-lysine (NicLys), Boc-N- α -methyl-arginine (α -MeArg), and 6-Quinolylalanine (6-Qal) were synthesized. L-Citrulline was purchased from Aldrich and Boc protection of the alpha-amino group was added before coupling.

Synthesis

The 26 peptides of Table I were synthesized as described [8].

Purification and purity

All of the peptides were first purified by chromatography over silica gel, and finally by HPLC using the solvent systems which were described [8]. Single peaks were observed on analytical μ -Bondpak C_{18} columns (3.9 mm \times 30 cm) when phosphate-acetonitrile buffer systems were used at the various concentrations of acetonitrile according to Table II. The chromatographic data on these peptides are in Table II. Table III contains the amino acid analytical data, which were obtained as described [8].

Biological assays

The peptides were bioassayed to determine their activities to inhibit ovulation in rats as described [8], and the data are in Table I. Hook *et al.* [11] described a system to assay analogs for histamine release, which we have used to provide the data in Table I. The system utilizes mast cells from adult male Sprague-Dawley rats. A concentration of 575 µg/ml of LHRH in this system released 50% of the total histamine.

Results and Discussion

Activities for inhibition of ovulation in rats

Table I contains the data on the antiovulatory activities and the activities for the release of histamine by the 26 peptides. Only two of the Peptides showed no antiovulatory activity (AOA) at a dosage of 1 μ g. It was policy not to test the peptides above this level. Frequently, these peptides would not be tested at a level above 0.5 μ g in recognition of the goal which was to seek ever increasing potency. In general, the release of histamine was tested at a dosage of 10 μ g unless a peptide was of special interest in which case the dosage was reduced to 0.01 μ g.

All of these peptides have the substitutions of $[N-Ac-D-2-Nal^1,D-pClPhe^2,()^3,Ser^4,()^5,()^6,()^7,()^8,Pro^9,D-Ala^{10}]-NH_2.$

Two objectives on sequence-activity were emphasized in the design of these 26 peptides which were to compare analogs with Lys⁸ and Arg⁸ and to compare analogs with substitutions in positions 3, 5, 6, 7 and 8.

Comparison of analogs with Lys⁸ and Arg⁸

Antagonists 1–8 constitute four pairs of antagonists, each with Arg⁸ and Lys⁸ (*i.e.*, 1 and 2, 3 and 4, etc.). For the pair 1 and 2 and the pair 3 and 4, the Lys⁸ analogs were more potent than the Arg⁸ analogs (80% vs. 57%/0.25 μ g and 87% vs. 25%/0.5 μ g, respectively). For the 5 and 6, the potencies of the Lys⁸ and Arg⁸ analogs were similar (90% vs. 85%/1.0 μ g), but for the pair 7 and 8, the Lys⁸ analog was 1/2 as active as the Arg⁸ analog (50% vs. 100%/0.5 μ g). The first three pairs were identical except for Lys⁸ and Arg⁸, but each of the three pairs are different in position 6 which makes the comparisons more meaningful. In the fourth pair, Arg was in position 5 in contrast to Tyr⁵ in the first three pairs.

Table I. Antagonists of LHRH based on $[N-Ac-D-2-Nal^1,D-pClPhe^2,()^3,Ser^4,()^5,()^6,()^7,()^8,Pro^9,D-Ala^{10}-NH_2]-LHRH.$

						% A(OA/μg			Wheal area [mm/µg]			
	$()^3$	() ⁵	() ⁶	() ⁷	()8	0.125	0.25	0.5	1	10	1	0.1	0.01
Cor	nparison of	Analogs w	ith Lys ⁸ and	d Arg ⁸									
1	D-3-Pal	Tyr	D-Arg	Leu	Arg*	-	57	100	_	184 ± 35	_	_	_
2	D-3-Pal	Tyr	D-Arg	Leu	Lys	_	80	100	_	158	123	105	51
3	D-3-Pal	Tyr	D-His	Leu	Arg	_	_	25	100	119	_	_	_
4	D-3-Pal	Tyr	D-His	Leu	Lys	_	_	87	100	96 ± 10	_	_	_
5	D-3-Pal	Tyr	D-3-Pal	Leu	Arg**	_	_	_	85	134	_	_	_
6	D-3-Pal	Tyr	D-3-Pal	Leu	Lys	_	_	_	90	120	_	_	_
7	D-3-Pal	Arg	D-3-Pal	Leu	Arg**	60	85	100	100	120	_	_	_
8	D-3-Pal	Arg	D-3-Pal	Leu	Lys	-	-	50	_	154	-	_	_
Con	nparison of .	Analogs w	ith Substitu	tions in	Positions 3, 5,	6, 7 and	8						
9	D-3-Pal	Ile	D-Arg	Leu	Arg	10	100	100	100	189	_	_	_
10	D-3-Pal	3-Pal	D-Arg	Leu	Leu	_	_	_	70	154	128	92	68
11	D-3-Pal	3-Pal	D-2-Nal	Leu	Leu	-	_	0	_	_	_	_	_
12	D-3-Pal	3-Pal	D-3-Pal	Leu	Cit	-	_	0	_	101 ± 6 .	1 –	_	_
13	D-3-Pal	3-Pal	D-3-Pal	Leu	NicLys	-	_	0	_	99 ± 10 .	3 –	_	
14	D-3-Pal	3-Pal	D-3-Pal	Leu	His	_	_	0	_	144 ± 10 .	6 –	_	_
15	D-3-Pal	Tyr	D-Arg	Leu	D(L)aMeAr	g –	_	0	-	_	_	_	_
16	D-3-Pal	Tyr	D-Arg	Leu	D-Trp	_	_	_	0	_	_	_	_
17	D-3-Pal	Tyr	D-Arg	Leu	3-Pal	_	_	0	20	_	_	_	_
18	D-3-Pal	Tyr	D-Arg	Leu	Trp	_	_	10	10	_	_	_	_
19	D-3-Pal	Tyr	D-Arg	Nle	Arg	_	60	_	_	_	_	_	_
20	D-Phe	Phe	D-Arg	Val	Arg	_	40	100	_	_	_	_	_
21	D-Phe	Tyr	D-Arg	Phe	Arg	_	30	_	_	_	-	_	_
22	D-3-Pal	Tyr	D-Arg	Lys	Arg	_	-	8	_	_	_	-	_
23	D-Phe	Tyr	D-Arg	6-Qal	Arg	_	0	_	_	_	_	_	_
24	D-3-Pal	3-Pal	D-Arg	Ile	Arg	_	27	_	_	_	_	-	_
25	D-3-Pal	Arg	D-3-Pal	Cit	Arg	_	_	0	-	95 ± 0	-	-	_
26	D-Arg	Tyr	D-Arg	Leu	3-Pal	_	_	0	0	_	_		_

^{*} Ref. 12.

The most potent antagonist of Table I was peptide 7 with Arg^5 and Arg^8 which showed 60% AOA at 0.125 µg [8]. However, peptides 2 and 7 had similiar potencies (80 and 85%) at 0.25 µg. Again, a given substitution may be superior in one pair of analogs but not in another pair with only a single additional change.

Comparisons of analogs with substitutions in positions 3, 5, 6, 7 and 8

Of the eighteen analogs (No. 9–26) with the substitutions in positions 3, 5, 6, 7 and 8, the analog number 9 with ${\rm Ile^5}$, ${\rm p\text{-}Arg^6}$, ${\rm Arg^8}$ was the most potent showing 100% AOA at 0.25 ${\rm \mu g}$ and 10% AOA at 0.125 ${\rm \mu g}$. In this analog, the replacement of ${\rm Ile^5}$ with 3-Pal⁵ and ${\rm Arg^8}$ with Leu⁸ greatly reduced activity to 70%/1.0 ${\rm \mu g}$.

The introduction of D-2-Nal⁶ and D-3-Pal⁶ in place of D-Arg⁶ and the introduction of Cit⁸, NicLys⁸ and His⁸ gave inactive peptides at 0.5 μ g. The introduction of Tyr⁵ for Ile⁵ and D(L)N- α -MeArg⁸ in place of Arg⁸ was also detrimental.

The maintenance of D-3-Pal³ or D-Phe³ and various introductions of Tyr⁵ and Phe⁵ and 3-Pal⁵ all with D-Arg⁶ but variously with Nle⁷, Val⁷, Phe⁷ and Ile⁷ gave antagonists showing 27–60% AOA at 0.25 µg, and which were relatively successful sequence changes.

For analogs 12 and 25, the change from Leu⁷, Cit⁸ in analog 12 to Cit⁷, Arg⁸ in analog 25 did not bestow activity.

The exchange of D-3-Pal, Arg^8 in peptide 1 for D-Arg³, 3-Pal⁸ significantly reduced activity to $0\%/1.0~\mu g$.

In summary, substitutions with D-3-Pal³ and Tyr⁵ or Phe⁵ with D-Arg⁶ and Nle⁷ or Val⁷ with Arg⁸ were

^{**} Ref. 8.

Table II. Chromatographic data on LHRH antagonists.

Amalaa	Linear and linear in	HPLC	TLC								
Analog No. ^a	Linear gradient in % change of CH ₃ CN	Retention time [min]	R_{f_1}	$R_{\rm f_2}$	$R_{\rm f_3}$	R_{f_4}	$R_{\rm f_5}$	R_{f_6}	$R_{\mathrm{f}_{7}}$	R_{f_8}	$R_{ m f_9}$
2	30 to 60 in 20 min*	10.4	0.11	0.15	0.24	0.20	0.28	_	_	_	_
3	32 to 64 in 15 min	6.0	0.15	0.18	0.49	0.18	-	0.75	_	_	_
4	16 to 64 in 15 min	9.1	-	0.16	0.47	0.19	-	-	0.56	0.61	_
6	24 to 60 in 15 min*	8.6	0.16	0.17	0.25	0.21	0.29	_	_	_	_
8	16 to 64 in 15 min	3.0	-	0.10	_	0.25	-	-	0.59	0.19	_
9	32 to 80 in 15 min	7.1	-	0.24	-	0.19	_	_	0.58	0.76	0.15
10	32 to 80 in 15 min	2.7	-	0.26	_	0.13	_	_	0.83	0.81	0.33
11	24 to 80 in 15 min	8.2	_	-	_	0.24	-	_	0.68	0.66	_
2	24 to 64 in 15 min	5.4	-	0.06	0.45	0.16	_	_	0.51	0.58	_
13	32 to 80 in 15 min	4.1	-	0.14	_	0.28	1-	-	0.65	0.61	0.27
14	32 to 80 in 15 min	3.3	-	0.08	_	0.19	_	-	0.58	0.56	0.20
5	_	-	-	-	-	0.21	_	-	_	_	_
16	20 to 50 in 20 min	13.5	0.29	0.15	0.45	0.30	_	0.76		_	_
17	32 to 80 in 20 min**	11.2	-	_	_	_	-	-	-	_	_
18	32 to 80 in 20 min**	15.0	-	-	_	-	-	-	_	_	_
19	30 to 60 in 25 min*	20.8	0.25	0.08	0.37	0.21	-	0.67	-	_	_
20	32 to 80 in 15 min	8.5	0.32	0.26	0.41	0.25	-	0.75	-	_	_
21	32 to 80 in 15 min	8.0	0.35	0.29	0.43	0.24	0.38	0.76	_	-	_
22	20 to 50 in 20 min	8.9	-	-	-	0.00	0.40	_	_	_	0.01
23	32 to 80 in 15 min	7.6	0.14	0.22	0.31	0.27	0.35	-	-	_	_
24	32 to 64 in 15 min	6.0	0.13	0.04	0.47	0.15	-	0.71	-	_	_
25	16 to 64 in 15 min	7.7	_	0.01	0.39	0.14	_	_	0.43	0.10	_
26	32 to 80 in 20 min**	10.1	-	-	-	-	-	-	-	-	-

HPLC Solvent System:

Buffer A = 0.01 m KH_2PO_4 , pH = 3; buffer B = 20% A in CH_3CN , eluted in linear gradient at various percentages of CH_3CN in 15 to 25 min as listed at a flow rate of 2 ml per minute.

- * Buffer A = $0.1 \text{ M NH}_4\text{OAc}$, pH = 5, buffer B = 20% A in CH₃CN.
- ** Buffer A = 0.05 m NH₄OAc, pH = 5, buffer B = 20% A in CH₃CN.

TLC Solvents:

```
R_{f_1} = nBuOH:EtOAc:HOAc:H_2O = 15:5:1:3.

R_{f_2} = nBuOAc:nBuOH:HOAc:H_2O = 2:8:2:3.
```

 $R_{\rm f_3}^2 = n \text{BuOH} : \text{HOAc} : \text{H}_2\text{O} = 4:1:2.$

 $R_{f_4}^{3} = nBuOH:HOAc:H_2O = 4:1:5$ (upper).

 $R_{\rm f5} = n \text{BuOAc:} n \text{BuOH:} \text{HOAc:} \text{H}_2\text{O:} \text{pyridine} = 2:8:2:2:1.$

 $R_{f_6} = n \text{BuOH:pyridine:HOAc:H}_2\text{O} = 5:3.3:1:4.$

 $R_{f_7} = n \text{BuOH:pyridine:HOAc:H}_2\text{O} = 4:1:1:2.$

 $R_{f_8} = \text{EtOAc:} n\text{BuOH:} HOAc: H_2O = 1:1:1:1.$

 $R_{fq} = \text{EtOAc:pyridine:HOAc:H}_2\text{O} = 20:5:3:3.$

relatively good substitutions for the potency of AOA.

Activity for release of histamine

It is understood that the bioassays for AOA are presumably more quantitative than are the assays for the release of histamine by the method used. Of the four pairs of antagonists with Arg⁸ and Lys⁸, three of the four pairs with Lys⁸ were possibly less active for release of histamine than those with Arg⁸, but the reverse was probably true for the fourth pair (peptides 7 and 8).

The two peptides (No. 2 and 7) showing 80 and 85% AOA, respectively, at $0.25~\mu g$ were less active for histamine release (158 and 120 mm) than was

analog 9 which showed 100% AOA/0.25 μ g and a wheal area of 189 mm.

Acknowledgements

Appreciation is expressed to Dr. Marvin Karten and to the Contraceptive Development Branch of the National Institute of Child Health and Human Development under Contract No. NICHD-NO1-HD-4-2831, and to the Robert A. Welch Foundation, and the World Health Organization for their respective support of this research. Gifts of intermediates were kindly supplied by Dr. Narasimha Rao of the Southwest Foundation for Research and Education, San Antonio, Texas.

^a Analog No. 1 (Ref. 12), analog No. 5 and 7 (Ref. 8).

Table III. Amino acid analytical data for LHRH antagonists.

Analog No.*	Amino Ser	o acid Tyr	Arg	Leu	Pro	Ala	Lys	His	Ile	Phe	2-Nal	pClPhe	3-Pal	Others
2	1.05	1.02	1.01	0.98	0.92	1.08	0.94	-	-	_	+	+	+	
3	0.88	0.92	1.07	1.01	1.02	1.06	-	1.05	_	-	+	+	+	
4	0.96	0.91	-	1.04	0.99	1.06	1.03	1.01	-	-	+	+	+	
6	0.89	0.95	-	0.99	0.98	0.99	0.99	-	-	-	+	+	++	
8	0.89	-	1.03	0.99	0.99	0.96	1.04	-	-	-	+	+	2.10	
9	1.06	-	1.63	1.06	1.15	1.09	_	_	0.82	-	+	+	+	
10	0.94	-	1.08	2.09	0.88	1.02	-	_	-	_	+	+	++	
11	0.93	-	2.10	0.96	1.01	0.89	-	-	-	_	++	+	1.11	
12	0.82	-	0.96	1.01	1.22	1.00	-	_	-	-	+	+	++	Cit(+)
13	0.83	_	1.01	1.03	1.10	0.97	1.06	_	_	_	+	+	++	
14	0.88	_	1.05	1.05	0.99	1.00	_	1.03	_	-	+	+	++	
15	1.00	0.96	0.99	0.99	0.97	1.10	-	-	-	-	+	+	+	α -MeArg(+)
16	0.90	1.05	0.94	0.89	1.02	1.02	-	_	_	_	+	+	+	Trp(+)
17	0.95	1.07	1.04	0.94	1.02	1.07	_	~	_	_	+	+	++	,
18	0.92	1.04	1.01	0.97	1.01	1.04	_	-	_	_	+	+	+	Trp(+)
19	0.82	0.93	2.05	-	1.05	0.92	_	_	_	_	+	+	+	Nle(+)
20	1.06	_	1.87	_	1.22	1.08	_	_	_	2.03	+	+	_	Val(0.75)
21	1.10	0.94	1.93	_	1.03	1.11	_	_	_	1.92	+	+	_	
22	0.90	0.97	1.97	_	1.09	1.09	0.97	_	_	_	+	+	+	
23	0.95	0.98	2.06	-	0.95	1.01	_	_	-	1.05	+	+	_	6-Qal(+)
24	0.97	_	1.99	-	1.04	1.07	_	_	0.93	_	+	+	++	
25	0.82	_	1.96	_	1.27	0.96	_	_	_	_	+	+	++	Cit(+)
26	0.91	1.03	1.97	0.91	1.02	1.15	_	_	_	_	+	+	+	

^{*} Analog 1 is found in Ref. 12 and analogs 5 and 7 are recorded in Ref. 8.

- [1] J. E. Rivier and M. Karten, Endocrine Review **7(1)**, 44 (1986).
- [2] F. Schmidt, K. Sundaram, R. B. Thau, and C. W. Bardin, Contraception 29(3), 283 (1984).
- [3] T. C. Theoharides and W. W. Douglas, Eur. J. Pharmacol. 73, 131 (1981).
- [4] J. Foreman and C. Jordon, Agents and Actions 13, 105 (1983).
- [5] T. Irman-Florjanc and F. Erjavec, Agents and Actions 13, 138 (1983).
- [6] M. D. Tharp, R. Thirlby, and T. J. Sullivan, J. Allergy Clin. Immunol. 74, 159 (1984).
- [7] R. W. Roeske, N. Chaturvedi, J. Rivier, W. Vale, J. Porter, and M. Perrin, Peptides: Structure and Function – Proceedings of the Ninth American Peptide Symposium, in press.

- [8] K. Folkers, C. Bowers, Xiao Shao-bo, P. F. L. Tang, and M. Kubota, Biochem. Biophys. Res. Commun., in press.
- [9] R. P. Millar, P. J. Wormald, and R. C. Milton, Science 232, 68 (1986).
- [10] K. Sundaram, F. Schmidt, R. B. Thau, J. Rivier, W. Vale, and C. W. Bardin, Contraception 29(3), 271 (1984).
- [11] W. A. Hook, M. Karten, and R. P. Siraganian, Federat. Proc. 44, 1323 (1985).
- [12] K. Folkers, C. Bowers, T. Kubiak, and T. Stepinski, Biochem. Biophys. Res. Commun. 111(3), 1089 (1983).